
Materials selection - the basics 

5.1 Introduction and synopsis 

5.2 The selection strategy 

Material attributes 
Figure 5.2 illustrates how the Kingdom of Materials can be subdivided into families, classes, 
subclasses and members. Each member is characterized by a set of attrributes: its properties. As 
an example, the Materials Kingdom contains the family ‘Metals’ which in turn contains the class 
‘Aluminium alloys’, the subclass ‘5000 series’ and finally the particular member ‘Alloy 5083 in the 

This chapter sets out the basic procedure for selection, establishing the link between material and
function (Figure 5.1). A material has attributes: its density, strength, cost, resistance to corrosion,
and so forth. A design demands a certain profile of these: a low density, a high strength, a modest
cost and resistance to sea water, perhaps. The problem is that of identifying the desired attribute
profile and then comparing it with those of real engineering materials to find the best match. This
we do by, first, screening and ranking the candidates to give a shortlist, and then seeking detailed
supporting information for each shortlisted candidate, allowing a final choice. It is important to
start with the full menu of materials in mind; failure to do so may mean a missed opportunity. If an .

innovative choice is to be made, it must be identified early in the design process. Later, too many
decisions have been taken and commitments made to allow radical change: it is now or never.

The immensely wide choice is narrowed, first, by applying property limits which screen out the
materials which cannot meet the design requirements. Further narrowing is achieved by ranking
the candidates by their ability to maximize performance. Performance is generally limited not by
a single property, but by a combination of them. The best materials for a light stiff tie-rod are
those with the greatest value of the 'specific stiffness', El p, where E is Young's modulus and p the
density .The best materials for a spring, regardless of its shape or the way it is loaded, are those with
the greatest value of a} I E , where a f is the failure stress. The materials which best resist thermal
shock are those with the largest value of a f I Ea, where a is the thermal coefficient of expansion;
and so forth. Combinations such as these are called material indices: they are groupings of material
properties which, when maximized, maximize some aspect of performance. There are many such
indices. They are derived from the design requirements for a component by an analysis of function,
objectives and constraints. This chapter explains how to do this.

The materials property charts introduced in Chapter 4 are designed for use with these criteria.
Property limits and material indices are plotted onto them, isolating the subset of materials which
are the best choice for the design. The procedure is fast, and makes for lateral thinking. Examples
of the method are given in Chapter 6.

Joe Sulton


Joe Sulton
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Fig. 5.1 Material selection is determined by function. Shape sometimes influences the selection. This
chapter and the next deal with materials selection when this is independent of shape.
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Fig. 5.2 The taxonomy of the kingdom of materials and their attributes.

H2 heat treatment condition' .It, and every other member of the materials kingdom, is characterized
by a set of attributes which include its mechanical, thermal, electrical and chemical properties, its
processing characteristics, its cost and availability , and the environmental consequences of its use.
We call this its property-profile. Selection involves seeking the best match between the property-
profile of materials in the kingdom and that required by the design.

There are two main steps which we here call screening and ranking, and supporting information
(Figure 5.3). The two steps can be likened to those in selecting a candidate for a job. The job is first
advertised, defining essential skills and experience ('essential attributes'), screening-out potential
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Fig. 5.3 The strategy for materials selection. The main steps are enclosed in bold boxes. 

applicants whose attribute-profile does not match the job requirements and allowing a shortlist to 
be drawn up. References and interviews are then sought for the shortlisted candidates, building a 
file of supporting information. 

Screening and ranking 
Unbiased selection requires that all materials are considered to be candidates until shown to be 
otherwise, using the steps detailed in the boxes of Figure 5.3. The first of these, screening, eliminates 
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candidates which cannot do the job at all because one or more of their attributes lies outside the 
limits imposed by the design. As examples, the requirement that ‘the component must function at 
250”C’, or that ‘the component must be transparent to light’ imposes obvious limits on the attributes 
of maximum service temperature and optical transparency which successful candidates must meet. 
We refer to these as property limits. They are the analogue of the job advertisement which requires 
that the applicant ‘must have a valid driving licence’, or ‘a degree in computer science’, eliminating 
anyone who does not. 

Property limits do not, however, help with ordering the candidates that remain. To do this we 
need optimization criteria. They are found in the material indices, developed below, which measure 
how well a candidate which has passed the limits can do the job. Familiar examples of indices 
are the specific stiffness E / p  and the specific strength a f / p  (E  is the Young’s modulus, of is the 
failure strength and p is the density). The materials with the largest values of these indices are the 
best choice for a light, stiff tie-rod, or a light, strong tie-rod respectively. There are many others, 
each associated with maximizing some aspect of performance*. They allow ranking of materials by 
their ability to perform well in the given application. They are the analogue of the job advertisement 
which states that ‘typing speed and accuracy are a priority’, or that ‘preference will be given to 
candidates with a substantial publication list’, implying that applicants will be ranked by these 
criteria. 

To summarize: property limits isolate candidates which are capable of doing the job; material 
indices identify those among them which can do the job well. 

Supporting information 
The outcome of the screening step is a shortlist of candidates which satisfy the quantifiable require- 
ments of the design. To proceed further we seek a detailed profile of each: its supporting infirmation 
(Figure 5.3, second heavy box). 

Supporting information differs greatly from the property data used for screening, Typically, it is 
descriptive, graphical or pictorial: case studies of previous uses of the material, details of its corrosion 
behaviour in particular environments, information of availability and pricing, experience of its 
environmental impact. Such information is found in handbooks, suppliers data sheets, CD-based data 
sources and the World-Wide Web. Supporting information helps narrow the shortlist to a final choice, 
allowing a definitive match to be made between design requirements and material attributes. The 
parallel, in filling a job, is that of taking up references and conducting interviews - an opportunity 
to probe deeply into the character and potential of the candidate. 

Without screening, the candidate-pool is enormous; there is an ocean of supporting information, 
and dipping into this gives no help with selection. But once viable candidates have been identified 
by screening, supporting information is sought for these few alone. The Encyclopaedia Britannica 
is an example of a source of supporting information; it is useful if you know what you are looking 
for, but overwhelming in its detail if you do not. 

Local conditions 
The final choice between competing candidates will often depend on local conditions: on the existing 
in-house expertise or equipment, on the availability of local suppliers, and so forth. A systematic 
procedure cannot help here - the decision must instead be based on local knowledge. This does 

* Maximizing performance often means minimizing something: cost is the obvious example; mass, in transport systems, 
is another. A low-cost or light component, here, improves performance. Chapter 6 contains examples of both. 
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not mean that the result of the systematic procedure is irrelevant. It is always important to know 
which material is best, even if, for local reasons, you decide not to use it. 

We will explore supporting information more fully in Chapter 13. Here we focus on the derivation 
of property limits and indices. 

5.3 Deriving property limits and material indices 
How are the design requirements for a component (which define what it must do) translated into 
a prescription for a material? To answer this we must look at thefunction of the component, the 
constraints it must meet, and the objectives the designer has selected to optimize its performance. 

Function, objectives and constraints 
Any engineering component has one or more functions: to support a load, to contain a pressure, to 
transmit heat, and so forth. In designing the component, the designer has an objective: to make it as 
cheap as possible, perhaps, or as light, or as safe, or perhaps some combination of these. This must 
be achieved subject to constraints: that certain dimensions are fixed, that the component must carry 
the given load or pressure without failure, that it can function in a certain range of temperature, and 
in a given environment, and many more. Function, objective and constraints (Table 5.1) define the 
boundary conditions for selecting a material and - in the case of load-bearing components - a 
shape for its cross-section. 

Let us elaborate a little using the simplest of mechanical components as examples, helped by 
Figure 5.4. The loading on a component can generally be decomposed into some combination 
of axial tension or compression, bending, and torsion. Almost always, one mode dominates. So 
common is this that the functional name given to the component describes the way it is loaded: 
ties carry tensile loads; beams carry bending moments; shafts cany torques; and columns carry 
compressive axial loads. The words ‘tie’, ‘beam’, ‘shaft’ and ‘column’ each imply a function. Many 
simple engineering functions can be described by single words or short phrases, saving the need to 
explain the function in detail. In designing any one of these the designer has an objective: to make it 
as light as possible, perhaps (aerospace), or as safe (nuclear-reactor components), or as cheap - if 
there is no other objective, there is always that of minimizing cost. This must be achieved while 
meeting constraints: that the component carries the design loads without failing; that it survives 
in the chemical and thermal environment in which it must operate; and that certain limits on its 
dimensions must be met. The first step in relating design requirements to material properties is a 
clear statement of function, objectives and constraints. 

Table 5.1 Function, objectives and constraints 

Function What does component do? 
Objective 
Constraints* 

What is to be maximized or minimized? 
What non-negotiable conditions must be met? 
What negotiable but desirable conditions . . .? 

* It is sometimes useful to distinguish between ‘hard’ and ‘soft’ constraints. Stiffness and strength might be absolute 
requirements (hard constraints); cost might be negotiable (a soft constraint). 
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Fig. 5.4 A cylindrical tie-rod loaded (a) in tension, (b) in bending, (c) in torsion and (d) axially, as a 
column. The best choice of materials depends on the mode of loading and on the design goal; it is found 
by deriving the appropriate material index. 

Property limits 
Some constraints translate directly into simple limits on material properties. If the component must 
operate at 250°C then all materials with a maximum service temperature less than this are elimi- 
nated. If it must be electrically insulating, then all material with a resistivity below lo2' pS-2 cm are 
rejected. The screening step of the procedure of Figure 5.3 uses property limits derived in this way 
to reduce the kingdom of materials to an initial shortlist. 

Constraints on stiffness, strength and many other component characteristics are used in a different 
way. This is because stiffness (to take an example) can be achieved in more than one way: by 
choosing a material with a high modulus, certainly; but also by simply increasing the cross-section; 
or, in the case of bending-stiffness or stiffness in torsion, by giving the section an efficient shape 
(a box or I-section, or tube). Achieving a specified stiffness (the constraint) involves a trade-off 
between these, and to resolve it we need to invoke an objective. The outcome of doing so is a 
material index. They are keys to optimized material selection. So how do you find them? 

Material indices 
A material index is a combination of material properties which characterizes the performance of a 
material in a given application. 
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First, a general statement of the scheme; then examples. Structural elements are components 
which perform a physical function: they carry loads, transmit heat, store energy and so on; in short, 
they satisfy functional requirements. The functional requirements are specified by the design: a tie 
must carry a specified tensile load; a spring must provide a given restoring force or store a given 
energy, a heat exchanger must transmit heat with a given heat flux, and so on. 

The design of a structural element is specified by three things: the functional requirements, the 
geometry and the properties of the material of which it is made. The performance of the element is 
described by an equation of the form 

)] (5.1) 
Functional Geometric Material 

p = f [(requirements, F )  1 (parameters, G )  1 ( properties, M 

or p = f ( F .  G ,  M )  

where p describes some aspect of the performance of the component: its mass, or volume, or cost, 
or life for example; and ‘ f ’  means ‘a function of‘. Optimum design is the selection of the material 
and geometry which maximize or minimize p ,  according to its desirability or otherwise. 

The three groups of parameters in equation (5.1) are said to be separable when the equation can 
be written 

p = f l ( F ) f ’ 2 ( G ) f - i ( M )  (5.2) 

where f I ,  f 2  and f 3  are separate functions which are simply multiplied together. When the groups 
are separable, as they generally are, the optimum choice of material becomes independent of the 
details of the design; it is the same for all geometries, G ,  and for all the values of the functional 
requirement, F .  Then the optimum subset of materials can be identified without solving the complete 
design problem, or even knowing all the details of F and G. This enables enormous simplification: 
the performance for all F and G is maximized by maximizing f 3  ( M ) ,  which is called the material 
efficiency coefficient, or material index for short*. The remaining bit, fl(F)f2(G), is related to 
the structural eflciency coeflcient, or structural index. We don’t need it now, but will examine it 
briefly in Section 5.5. 

Each combination of function, objective and constraint leads to a material index (Figure 5.5); the 
index is characteristic of the combination. The following examples show how some of the indices 
are derived. The method is general, and, in  later chapters, is applied to a wide range of problems. 
A catalogue of indices is given in Appendix C. 

Example 1: The material index for a light, strong, tie 
A design calls for a cylindrical tie-rod of specified length e ,  to carry a tensile force F without 
failure; it is to be of minimum mass. Here, ‘maximizing performance’ means ‘minimizing the mass 
while still carrying the load F safely’. Function, objective and constraints are listed in Table 5.2. 

We first seek an equation describing the quantity to be maximized or minimized. Here it is the 
mass m of the tie, and it is a minimum that we seek. This equation, called the objectivefunction, is 

m = A e p  (5 .3)  

where A is the area of the cross-section and p is the density of the material of which it is made. 
The length e and force F are specified and are therefore fixed; the cross-section A, is free. We can 

* Also known as the ‘merit index’, ‘performance index’, or ‘material factor’. In this book it is called the ‘material index’ 
throughout. 
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Fig. 5.5 The specification of function, objective and constraint leads to a materials index. The combina.:
tion in the highlighted boxes leads to the index E1/2 / p.

Table 5.2 Design requirements for the light tie

Function

Objective

Constraints

Tie-rod

Minimize the mass

(a) Length f specified
(b) Support tensile load F without failing

reduce the mass by reducing the cross-section, but there is a constraint: the section-area A must be
sufficient to carry the tensile load F, requiring that

F
-::::: (1[
A

where a f is the failure strength. Eliminating A between these two equations gives

Note the form of this result. The first bracket contains the specified load F. The second bracket
contains the specified geometry (the length i of the tie). The last bracket contains the material
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properties. The lightest tie which will carry F safely* is that made of the material with the smallest
value of pj a f. It is more natural to ask what must be maximized in order to maximize performance;
we therefore invert the material properties in equation (5.5) and define the material index M as:

The lightest tie-rod which will safely carry the load F without failing is that with the largest value
of this index, the 'specific strength', mentioned earlier. A similar calculation for a light stiff tie

leads to the index

where E is Young's modulus. This time the index is the 'specific stiffness'. But things are not
always so simple. The next example shows how this comes about.

Example 2: The material index for a light, stiff beam

The mode of loading which most commonly dominates in engineering is not tension, but
bending -think of floor joists, of wing spars, of golf-club shafts. Consider, then, a light beam
of square section b x b and length lloaded in bending which must meet a constraint on its stiffness
S, meaning.that it must not deflect more than 8 under a load F (Figure 5.6). Table 5.3 itemizes the

function, the objective and the constraints.
Appendix A of this book catalogues useful solutions to a range of standard problems. The stiffness

of beams is one of these. Turning to Section A3 we find an equation for the stiffness of an elastic

Fig. 5.6 A beam of square section, loaded in bending. Its stiffness is S = F /8, where F is the load and

8 is the deflection. In Example 2, the active constraint is that of stiffness, S; it is this which determines
the section area A. In Example 3, the active constraint is that of strength; it now determines the section

area A.

*In reality a safety factor, Sf, is always included in such a calculation, such that equation (5.4) becomes F/A ~ uf/Sf.
If the same safety factor is applied to each material, its value does not influence the choice. We omit it here for simplicity .
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Table 5.3 Design requirements for the light stiff beam 

Function Beam 
Objective Minimize the mass 
Constraints (a) Length e specified 

(b) Support bending load F without deflecting too much 

beam. The constraint requires that S = F / 6  be greater than this: 

where E is Young’s modulus, C1 is a constant which depends on the distribution of load and I is the 
second moment of the area of the section, which, for a beam of square section (‘Useful Solutions’, 
Appendix A, Section A2), is 

b4 A2 I = - = -  
12 12 (5.9) 

The stiffness S and the length e are specified; the section A is free. We can reduce the mass of 
the beam by reducing A, but only so far that the stiffness constraint is still met. Using these two 
equations to eliminate A in equation (5.3) gives 

(5.10) 

The brackets are ordered as before: functional requirement, geometry and material. The best ma- 
terials for a light, stiff beam are those with large values of the material index 

,i (5.11) 

Here, as before, the properties have been inverted; to minimize the mass, we must maximize M .  
Note the procedure. The length of the rod or beam is specified but we are free to choose the section 
area A. The objective is to minimize its mass, m. We write an equation for m; it is called the 
objective function. But there is a constraint: the rod must carry the load F without yielding in 
tension (in the first example) or bending too much (in the second). Use this to eliminate the free 
variable A.  Arrange the result in the format 

and read off the combination of properties, M ,  to be maximized. It sounds easy, and it is so long as 
you are clear from the start what you are trying to maximize or minimize, what the constraints are, 
which parameters are specified, and which are free. In deriving the index, we have assumed that 
the section of the beam remained square so that both edges changed in length when A changed. If 
one of the two dimensions is held fixed, the index changes. If only the height is free, it becomes 
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(via an identical derivation) 

(5.12) 

and if only the width is free, it becomes 

E M = -  
P 

(5.13) 

Example 3: The material index for a light, strong beam 
In stiffness-limited applications, it is elastic deflection which is the active constrajnt: it limits 
performance. In strength-limited applications, deflection is acceptable provided the component does 
not fail; strength is the active constraint. Consider the selection of a beam for a strength-limited 
application. The dimensions are the same as before. Table 5.4 itemizes the design requirements. 

The objective function is still equation (5.3), but the constraint is now that of strength: the beam 
must support F without failing. The failure load of a beam (Appendix A, Section A4) is: 

(5.14) 

where C2 is a constant and ym is the distance between the neutral axis of the beam and its outer 
filament (C2 = 4 and ym = t/2 for the configuration shown in the figure). Using this and equa- 
tion (5.9) to eliminate A in equation (5.3) gives the mass of the beam which will just support the 
load F f: 

The mass is minimized by selecting materials with the largest values of the index 

I I 

(5.15) 

(5.16) 

This is the moment to distinguish more clearly between a constraint and an objective. A constraint 
is a feature of the design which must be met at a specified level (stiffness in the last example). An 

Table 5.4 Design requirements for the light strong beam 

Function Beam 
Objective Minimize the mass 
Constraints (a) Length e specified 

(b) Support bending load F without failing by yield 
or fracture 
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objective is a feature for which an extremum is sought (mass, just now). An important judgement is
that of deciding which is to be which. It is not always obvious: for a racing bicycle, as an example,
mass might be minimized with a constraint on cost; for a shopping bicycle, cost might be minimized
with a constraint on the mass. It is the objective which gives the objective function; the constraints
set the free variables it contains.

So far the objective has been that of minimizing weight. There are many others. In the selection
of a material for a spring, the objective is that of maximizing the elastic energy it can store. In
seeking materials for thermal-efficient insulation for a furnace, the best are those with the lowest
thermal conductivity and heat capacity. And most common of all is the wish to minimize cost. So
here is an example involving cost.

Example 4: The material index for a cheap, stiff column

Columns support compressive loads: the legs of a table; the pillars of the Parthenon. We seek
materials for the cheapest cylindrical column of specified height, l, which will safely support a load
F (Figure 5.7). Table 5.5 lists the requirements.

Fig.5.7 A column carrying a compressive load F. The constraint that it must not buckle determines the
section area A.
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Table 5.5 Design requirements for the cheap column 

Function Column 
Objective Minimize the cost 
Constraints (a) Length t specified 

(b) Support compressive load F without buckling 

A slender column uses less material than a fat one, and thus is cheaper; but it must not be so 
slender that it will buckle under the design load, F .  The objective function is the cost 

C = ALC,,,p (5.17) 

where C,?, is the costkg of the material* of the column. It will buckle elastically if F exceeds the 
Euler load, F C i t ,  found in Appendix A, ‘Useful Solutions’, Section A5. The design is safe if 

(5.18) 

where n is a constant that depends on the end constraints and I = rrr2/4 = A2/4n  is the second 
moment of area of the column (see Appendix A for both). The load F and the length e are specified; 
the free variable is the section-area A. Eliminating A between the last two equations, using the 

(5.19) 

The pattern is the usual one: functional requirement, geometry, material. The cost of the column is 
minimized by choosing materials with the largest value of the index 

(5.20) 

From all this we distil the procedure for deriving a material index. It is shown in Table 5.6. 
Table 5.7 summarizes a few of the indices obtained in this way. Appendix D contains a more 

complete catalogue. We now examine how to use them to select materials. 

5.4 The selection procedure 

Property limits: goho-go conditions and geometric restrictions 
Any design imposes certain non-negotiable demands on the material of which it is made. Temper- 
ature is one: a component which is to carry load at 500°C cannot be made of a polymer since all 
polymers lose their strength and decompose at lower temperatures than this. Electrical conductivity 
is another: components which must insulate cannot be made of metals because all metals conduct 
well. Corrosion resistance can be a third. Cost is a fourth: ‘precious’ metals are not used in structural 
applications simply because they cost too much. 

* C,, is the costkg of the processed material, here, the material in the form of a circular rod or column. 
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Table 5.6 Procedure for deriving material indices 

Step Action 

1 De$ne the design requirements: 
(a) Function: what does the component do? 
(b) Objective: what is to be maximized or minimized? 
(c) Constraints: essential requirements which must be met: stiffness, strength, 

corrosion resistance, forming characteristics. . . 
Develop an equation for the objective in terms of the functional requirements, 
the geometry and the material properties (the objective function). 
Identify the free (unspecified) variables. 
Develop equations for the constraints (no yield; no fracture; no buckling, etc.). 
Substitute for the free variables from the constraint equations into the objective 
function. 
Group the variables into three groups: functional requirements, F ,  geometry, 
G ,  and material properties, M, thus 

2 

3 
4 
5 

6 

Performance characteristic 5 f l  ( F ) f 2 ( G ) f 3 ( M )  

Performance characteristic > f ( F ) f z ( C ) f 3  (M) or 

Read off the material index, expressed as a quantity M ,  which optimizes the 
performance characteristic. 

7 

Table 5.7 Examples of material indices 

Function, Objective and Constraint Index 

Tie, minimum weight, stiffness prescribed 

Beam, minimum weight, stiffness prescribed 

Beam, minimum weight, strength prescribed 

Beam, minimum cost, stiffness prescribed 

Beam, minimum cost, strength prescribed 

Column, minimum cost, buckling load prescribed 

P 

Crn P 

4 Spring, minimum weight for given energy storage - 
EP 

1 ~ 

LCmP 
KC,P 

Thermal insulation, minimum cost, heat flux prescribed 

Electromagnet, maximum field, temperature rise prescribed 

( p  = density; E = Young’s modulus; crv = elastic limit; Cm = costkg: h = 
thermal conductivity: K = electrical conductivity: C ,  = specific heat) 
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Geometric constraints also generate property limits. In the examples of the last section the length 
t was constrained. There can be others. Here are two examples. The tie of Example 1 ,  designed to 
carry a tensile force F without yielding (equation 5.4), requires a section 

F 
A ? -  

“f  

If, to fit into a confined space, the section is limited 
materials are those with strengths greater than 

F 
A 

a; = y 

to A 5 A*, then the only possible candidate 

(5.21) 

Similarly, if the column of Example 4, designed to carry a load F without buckling, is constrained 
to have a diameter less than 2r*, it will require a material with modulus (found by inverting 
equation (5.18)) greater than 

(5.22) 

Property limits plot as horizontal or vertical lines on material selection charts. The restriction on 
r leads to a lower bound for E ,  given by equation (5.22). An upper limit on density (if one were 
desired) requires that 

P < P* (5.23) 

One way of applying the limits is illustrated in Figure 5.8. It shows a schematic E - p  chart, in 
the manner of Chapter 4, with a pair of limits for E and p plotted on it. The optimizing search is 
restricted to the window between the limits within which the next steps of the procedure operate. 
Less quantifiable properties such as corrosion resistance, wear resistance or formability can all 
appear as primary limits, which take the form 

P > P* 

or P < P* (5.24) 

where P is a property (service temperature, for instance) and P” is a critical value of that property, 
set by the design, which must be exceeded, or (in the case of cost or corrosion rate) must not be 
exceeded. 

One should not be too hasty in applying property limits; it may be possible to engineer a route 
around them. A component which gets too hot can be cooled; one that corrodes can be coated with 
a protective film. Many designers apply property limits for fracture toughness, K I , ,  and ductility 
e f ,  insisting on materials with, as rules of thumb, K I ,  > 15MPam’/2 and E J  > 2% in order to 
guarantee adequate tolerance to stress concentrations. By doing this they eliminate materials which 
the more innovative designer is able to use to good purpose (the limits just cited for K I ,  and 
eliminate most polymers and all ceramics, a rash step too early in the design). At this stage, keep 
as many options open as possible. 

Performance maximizing criteria 
The next step is to seek, from the subset of materials which meet the property limits, those which 
maximize the performance of the component. We will use the design of light, stiff components as 
an example; the other material indices are used in a similar way. 
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Fig. 5.8 A schematic E-p  chart showing a lower limit for E and an upper one for p. 

Figure 5.9 shows, as before, the modulus E ,  plotted against density p, on log scales. The material 
indices E / p ,  E ' / ? - / p  and E ' l ' l p  can be plotted onto the figure. The condition 

E l p  = C 

or taking logs 
log E = log p + log C (5.25) 

is a family of straight parallel lines of slope 1 on a plot of log E against log p; each line corresponds 
to a value of the constant C. The condition 

E 1 I 2  / p = C  (5.24) 

gives another set, this time with a slope of 2; and 

E'l '/ lp = C (5.25) 

gives yet another set, with slope 3. We shall refer to these lines as selection guide lines. They give 
the slope of the family of parallel lines belonging to that index. 

It is now easy to read off the subset materials which optimally maximize performance for each 
loading geometry. All the materials which lie on a line of constant E ' / 2 / p  perform equally well as a 
light, stiff beam (Example 2); those above the line are better, those below, worse. Figure 5.10 shows 
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Fig. 5.9 A schematic E-p chart showing guide lines for the three material indices for stiff, lightweight 
design. 

Fig. 5.10 A schematic E-p chart showing a grid of lines for the material index M = E’I2/p.  The units are 
(G Pa)’ 12/( Mg/m3). 



82 Materials Selection in Mechanical Design 

Fig. 5.11 A selection based on the index M = E1l2 /p ,  together with the property limit E > 10GPa. The 
shaded band with slope 2 has been positioned to isolate a subset of materials with high E ' /2 /p ;  the 
horizontal ones lie at E = 10 GPa. The materials contained in the Search Region become the candidates 
for the next stage of the selection process. 

a grid of lines corresponding to values of A4 = E'12/p from 1 to 8 in units of GPa'/'/(MgmP3). 
A material with M = 4 in these units gives a beam which has half the weight of one with M = 2. 
One with M = 8 weighs one quarter as much. The subset of materials with particularly good values 
of the index is identified by picking a line which isolates a search area containing a reasonably 
small number of candidates, as shown schematically in Figure 5.11. Properly limits can be added, 
narrowing the search window: that corresponding to E > 10 GPa is shown. The shortlist of candidate 
materials is expanded or contracted by moving the index line. 

The procedure is extended in Chapters 7 and 9 to include section shape and to deal with multiple 
constraints and objectives. Before moving on to these, it is a good idea to consolidate the ideas 
SO far by applying them to a number of Case Studies. They follow in Chapter 6. But first a word 
about the structural index. 

5.5 The structural index 
Books on optimal design of structures (e.g. Shanley, 1960) make the point that the efficiency of 
material usage in mechanically loaded components depends on the product of three factors: the 
material index, as defined here; a factor describing section shape, the subject of our Chapter 7; and 
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a structural index*, which contains elements of the F and G of equation (S.1). The subjects of this 
book - material and process selection - focus attention on the material index and on shape; but 
we should examine the structural index briefly, partly to make the connection with the classical 
theory of optimal design, and partly because it becomes useful (even to us) when structures are 
scaled in size. 

Consider, as an example, the development of the index for a cheap, stiff column, given as 
Example 4 in  Section 5.2. The objective was that of minimizing cost. The mechanical eflciency is 
a measure of the load carried divided by the ‘objective’ - in this case, cost per unit length. Using 
equation (5.19) the efficiency of the column is given by 

(5.26) 

The first bracketed term on the right is merely a constant. The last is the material index. The structural 
index is the middle one: F/12 .  It has the dimensions of stress; it is a measure of the intensity of 
loading. Design proportions which are optimal, minimizing material usage, are optimal for structures 
of any size provided they all have the same structural index. The performance equations (5.5), (5.10), 
(5.15) and (5.19) were all written in a way which isolated the structural index 

The structural index for a column of minimum weight is the same as that for one which minimizes 
material cost; it is F / e 2  again. For beams of minimum weight, or cost, or energy content, it is the 
same: F / f 2 .  For ties it is simply 1 (try it: use equation (5.5) to calculate the load F divided by the 
mass per unit length, mil). For panels loaded in bending or such that they buckle it is F / L b  where 
t and b are the (fixed) dimensions of the panel. 

5.6 Summary and conclusions 
The design requirements of a component which performs mechanical, thermal or electrical functions 
can be formulated in terms of one or more objective functions, limited by constraints. The objective 
function describes the quantity to be maximized or minimized in the design. One or more of the 
variables describing the geometry is ‘free’, that is, it (or they) can be varied to optimize the design. If 
the number of constraints is equal to the number of free variables, the problem is fully constrained; 
the constraints are substituted into the objective function identifying the group of material properties 
(the ‘material index’) to be maximized or minimized in selecting a material. The charts allow this 
using the method outlined in this chapter. Often, the index characterizes an entire class of designs, 
so that the details of shape or loading become unimportant in deriving it. The commonest of these 
indices are assembled in Appendix C of this book, but there are more. New problems throw up new 
indices, as the Case Studies of the next chapter will show. 

5.7 Further reading 
The books listed below discuss optimization methods and their application in materials engineering. 
None contains the approach developed here. 

* Also called the ‘structural loading coefficient’, the ‘strain number’ or the ‘strain index’ 
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